Dates, Timestamps and Timezones - A
Comparative study of Oracle and N1QL
support for the Date-Time feature : Part
1

Date and Time formats/types are very different for different databases. In the article we
shall compare Couchbase N1QL Date-Time functions with Oracle’s Date-Time support.

Oracle contains multiple data types associated with date-time support, namely, DATE,
TIMESTAMP, TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME
ZONE. The TIMESTAMP data type is an extension of the DATE type.

Date values can be represented either as literals or as numeric values. The literal needs
to be in a specified format. The format for the date times can be set using the

NLS_ DATE_FORMAT, NLS_TIMESTAMP_FORMAT,

NLS TIMESTAMP_TZ FORMAT and the NLS_DATE_LANGUAGE parameters. (See
table below for detailed comparison with examples)

With Couchbase, Date-Time is done a little differently. All Dates and times should be
stored as strings that follow the ISO 8091 Extended date time format. N1QL contains
DATETIME functions that can be used to and extract these formatted strings. The
DATE and TIME for a specific timezone can also be represented as a Unix timestamp in
milliseconds. This essentially means that unlike Oracle, where the format of the input
Date and time can change based on the values of the NLS_DATE_FORMAT and
NLS_TIMESTAMP_FORMAT, the format for dates in Couchbase follows a strict set.
(See table below for detailed comparison with examples)

For example in oracle,

'2008-DEC-25 17:30'" is a wvalid date
given the NLS_DATE_FORMAT='YYYY—MON—DD HH24 :MI'

However to represent the same value in Couchbase the user needs to use one of the
given formats (see here).

https://developer.couchbase.com/documentation/server/current/n1ql/n1ql-language-reference/datefun.html

This will be 2008-12-25 17:30:00

In oracle fractional _seconds_precision is optional and specifies the number of digits
in the fractional part of the SECOND datetime field. It can be a number (0 to 9) with
the default being 6.

For example, In oracle the timestamp format can be given as
TIMESTAMP 'YYYY-MM-DD HH24:MI:SS.FFF'

Using this we can define the timestamp to be '2006-01-02
15:04:05.999"

N1QL has support for fractional seconds similar to oracle. This is seen when using the
format- "2006-01-02T15:04:05.999". However N1QL supports 3 digit precision
(nanosecond precision) and oracle supports upto 9 digit fractional second precision.

This means that if we specify the date "2006-01-02T15:04:05.999123456",
nlgl will round off to 3 digits and return
"2006-01-02T15:04:05.999".

For N1QL,

SELECT STR TO TZ("2006-01-02T15:04:05.999123456",
'America/Los_Angeles') as west;

"results": [

{
"west": "2006-01-02T15:04:05.999"

For Oracle,

SELECT TO TIMESTAMP ('25-DEC-2008 01:00:00.336123456"', 'dd-mon-yyyy
hh:mi:ss.ff') as D from dual;

2008-12-25 01:00:00.336123456

For N1QL, If we specify a more than 9 digits, the Date-Time function returns null.

SELECT STR TO TZ("2006-01-02T15:04:05.9991234567",

'America/Los_Angeles') as west;

"results": |

{

"west": null

]

For oracle, if you give more than 9 digits for the fractional seconds part it throws an
error - ORA-01830: date format picture ends before converting entire input string

A comparison of the Couchbase N1QL and Oracles date time support is given is a

following table.

Oracle’s Date and Time datatypes

Couchbase N1QL’s date time format
support

DATE (Data type)

Format defined by -
e NLS_DATE_FORMAT
e NLS DATE_LANGUAGE

Example :

The NLS_DATE_FORMAT parameter needs
to be set in the initialization parameter file.
NLS DATE FORMAT='YYYY-MON-DD'

Sample date
DATE '2008-DEC-25"

In N1QL there is no specific
date/time/timestamp data type. They are
all represented by JSON strings with ISO
8091 extended formats and are
manipulated using the date time
manipulation and arithmetic functions.

- (see documentation for list)

Allowed formats : (The date format) *
YYYY-MM-DD

Example:
{

"Date" : "2008-12-25"

https://developer.couchbase.com/documentation/server/current/n1ql/n1ql-language-reference/datefun.html

To set the NLS_DATE_LANGUAGE
parameter we can use the ALTER SESSION
statement.

ALTER SESSION SET NLS DATE LANGUAGE =

FRENCH;

SELECT TO CHAR(SYSDATE, 'Day:Dd Month

yyyy') FROM DUAL;

TO CHAR (SYSDATE, 'DAY : DDMONTHYYYY ')

Lundi :21 Aolt

}

In Couchbase/N1QL dates need to be
represented in specific formats with
day,month and year in numeric form.

For all dates that do not match the
input formats, we return the input date
in the default format which is
YYYY-MM-DDThh:mm:ss.sTZD.

Let us use the function
DATE_FORMAT_STR to convert the date
format from YYYY-MM-DD to
'YYYY-MON-DD' (which in N1QL is an
invalid format)

select date_format str('2008-12-25",
'1111-DEC-12") D;
"results": [
{
"D":
}

"2008-12-25T00:00:00-08:00"
]
Couchbase supports only ISO Extended date

formats. It doesn't support non-numeric dates
in multiple languages.

TIMESTAMP (Data Type)

Format defined by -
e NLS TIMESTAMP_FORMAT

You can specify the value of
NLS_ TIMESTAMP_FORMAT by setting it
in the initialization parameter file.

NLS TIMESTAMP FORMAT =

'YYYY-MM-DD HH:MI:SS.FF'

Same functions as Date but with a
different input date format (input
argument to the function). This needs to
be explicitly provided. The timestamp
formats are given below -

The date format along with timestamp
components :

e YYYY-MM-DD hh:mm:ss

e YYYY-MM-DDThh:mm:ss

e YYYY-MM-DD hh:mm:ss.s

e YYYY-MM-DDThh:mm:ss.s

Only timestamp based formats -
e hh:mm:ss

We can use the TO_TIMESTAMP function to
convert input date-time to timestamp data

type.
SELECT TO_TIMESTAMP('25—DEC—2008
01:00:00.336", 'dd-mon-yyyy

hh:mi:ss.ff') from dual;

TO TIMESTAMP ('25-DEC-200801:00:00

.336"', 'DD-MON-YYYYHH:MI:SS.FF"')

2008-12-25 01:00:00.336

e Hh:mm:ss.s

Couchbase supports nanosecond
precision.

For Example:
select
date_format str('2008-12-25T01:00:00.
336', '1111-DEC-12 01:00:00.00'") D;
"results": [
{
"D": "2008-12-25T01:00:00.336-08:00"
}

TIMESTAMP WITH TIMEZONE
TIMESTAMP WITH LOCAL TIME ZONE

Data type

Format defined by -
e NLS TIMESTAMP_TZ_FORMAT

You can specify the value of
NLS TIMESTAMP_TZ_FORMAT by
setting it in the initialization parameter file.

NLS TIMESTAMP TZ FORMAT =

'YYYY-MM-DD HH:MI:SS.FF TZH:TzZM'

We can use the TO_TIMESTAMP_TZ
function to convert input date-time to
timestamp with timezone data type. (It
maintains the input timezone)

SELECT
TO CHAR(TO TIMESTAMP TZ('2008-12-25,
01:00:00.336 -08:00"', 'yyyy-mm-dd

hh:mi:ss.ff TZR')) FROM DUAL;

Timezone Manipulation functions - (see
documentation for list)

Allowed formats : *
Including the DateTime components of
the format :

e YYYY-MM-DDThh:mm:ssTZD
e YYYY-MM-DD hh:mm:ssTZD
e YYYY-MM-DDThh:mm:ss.sTZD
e YYYY-MM-DD hh:mm:ss.sTZD

Only timestamp based formats -
e hh:mm:ss.sTZD
e hh:mm:ssTZD

With N1QL, in addition to the specific
formats we also have specific
timezone functions one of which is
STR_TO_TZ which converts the input
date to the specified timezone.

SELECT
STR TO Tz ('2008-12-25T01:00:00.33
6-08:00', 'America/Los Angeles')

as west;

https://developer.couchbase.com/documentation/server/current/n1ql/n1ql-language-reference/datefun.html

TO CHAR(TO _TIMESTAMP TZ('2008-12-25 | "results": [

,01:00:00.336-08:00", 'YYYY-MM-DDHH: {
"west":
"2008-12-25T01:00:00.336-08:00"

______________________________________ }
25-DEC-08 01.00.00.336000000 AM -08:00]

MI:SS.FFTZR'))

Table - Oracle DateTime types VS N1QL ISO Date Formats

* Both Oracle and N1QL automatically determines whether Daylight Saving Time is in
effect for a specified time zone and returns the corresponding local time.

** When dealing with the date formats in N1QL, it is important to remember that each
““component of the date time string need to be represented by a valid numeric value. So
when passing in the date format to any N1QL functions, we need to pass the date as
“2001-12-12” instead of “YYYY-MM-DD”. N1QL only supports the listed formats. Also
the Date component of the date-time string has to be separated by “-” and the time

components need to be separated by “:”. Otherwise it is not a valid Date.

For any date/time types both Oracle and N1QL store extra information in different fields
for the input date. These allow the user to extract specific information about the date.

Oracle’s date-time fields are CENTURY, YEAR, MONTH, DAY, HOUR, MINUTE and
SECOND. The TIMESTAMP data types represent seconds as fractional seconds with
its precision is determined by the fractional _seconds_precision parameter. It also
includes "“the fields TIMEZONE_HOUR, TIMEZONE_MINUTE, TIMEZONE_REGION
and TIMEZONE_ABBR. It internally converts the above character values into date
values. "The default time for the time component is midnight and the default date for the
date component is the first day of the current month. A DATE datatype stores both the
date and time information.

In addition to the fields that Oracle supports for its DATE and TIME data-types, N1QL
also supports MILLENNIUM, DECADE, QUARTER, WEEK and MILLISECOND. The
value of these fields is computed internally using basic arithmetic. N1QL does not
support TIMEZONE_REGION and TIMEZONE_ABBR fields.

A detailed comparison for each field is given in the table below.
Let us consider the following sample row for our examples in Oracle :

create table tl (date purchased timestamp with time zone);
insert into tl values (TIMESTAMP '2008-12-25 01:00:00.336 PST'):;

t1

date_purchased

2008-12-25,01:00:00.336-08:00

Let us consider the corresponding Couchbase document

Create bucket1 in Couchbase.

create primary index on bucketl;

Insert into bucketl wvalues ("23",

{"date purchased":"2008-12-25T01:00:00.336-08:00"}) ;

Bucket1 - Document id : 23
{

“‘date_purchased":"2008-12-25T01:00:00.336-08:00"

}

The TO_CHAR (‘CC’) (with a date as the first arg) and EXTRACT function is used in
oracle to retrieve the date-time field values in Oracle. For N1QL there are 2 functions
DATE_PART_STR or DATE_PART_MILLIS depending on whether the date is
represented as a JSON string or a numeric millisecond. We will use these functions to
give examples for each date time field listed below.

Date-Time fields/ parts | Oracle N1QL
CENTURY = (=3
select select

TO_CHAR(date_purchased, DATE_PART_STR(date_purc
'CC') from t1; hased,"century") as C from

TO CHAR (DATE_ PURCHASED
»"CCY)

bucket1;

““““““““““““ "results": [
21 {
"cr: 21
}
]
YEAR = =
SELECT EXTRACT((year select
FROM date_purchased) "D" DATE_PART_STR(date_purc
from t1; hased,"year") as C from
bucket1;
D
________ "results": [
2008 {
"c": 2008
}
]
MONTH = =
SELECT EXTRACT(month select
FROM date_purchased) "D" DATE_PART_STR(date_purc
from t1; hased,"month") as C from
bucket1;
D
1; ______ "results": [
{
"et: 12
}
]
DAY = =4
SELECT EXTRACT(day select

FROM date_purchased) "D"
from t1;

DATE_PART_STR(date_purc
hased,"day") as C from
bucket1;

"results": [

{
"CT: 25

HOUR

(different behaviour)

0

| S

SELECT EXTRACT (hour
FROM date_purchased) "D"
from t1;

Oracle considers the timezone
component of the input
timestamp.

I

select
DATE_PART_STR(date_ purc
hased,"hour") as C from
bucket1;

"results": [

{
"C": 1

The difference in results is
because N1QL does not
consider the timezone
component of the input
timestamp.

MINUTE = =
SELECT EXTRACT(minute select
FROM date_purchased) "D" DATE_PART_STR(date_purc
from t1; hased,"minute") as C from
bucket1;
D
________ "results": [
0
{
" C " : O
}
]
SECOND = Z
SELECT EXTRACT(second select

FROM date_purchased) "D"
from t1;

DATE_PART_STR(date purc
hased,"second") as C from
bucket1;

"results": [

{

"C": O

]

(for fractional part see

millisecond)
TIMEZONE_HOUR = =
SELECT select

EXTRACT (timezone_hour
FROM date_purchased) "D"
from t1;

DATE_PART_STR(date purc
hased,"timezone_hour") as C
from bucket1;

________ "results": [
_g {
now. _8
}
]
TIMEZONE_MINUT | &= =
E
SELECT select

EXTRACT(timezone_minute
FROM date_purchased) "D"
from t1;

DATE_PART_STR(date purc
hased,"timezone_minute") as
C from bucket1;

? _______ "results": [
0 {
"Cll : O
}
]

TIMEZONE_REGIO |= (1%}
N

SELECT

EXTRACT(timezone_region
FROM date_purchased) "D"
from t1;

TIMEZONE_ABBR

(153

SELECT

EXTRACT (timezone_abbr
FROM date_purchased) "D"
from t1;

D
PST
TIMEZONE (offset (Data type itself, not a field) =
from UTC)
select
DATE_PART_STR(date purc
hased,"timezone") as C from
bucket1;
"results": [
{
"C": -28800
}
]
The number here represents
the timezone in seconds.
MILLENNIUM (154 =
Millennium = (Year / 1000)
+1
select
DATE_PART_STR(date_purc
hased,"millennium") as D from
bucket1;
"results": [
{
"Dll : 3
}
]
DECADE G =

Decade = Year/ 10

select
DATE_PART_STR(date_purc
hased,"decade") as D from
bucket1;

"results": [

{
"D": 200

QUARTER G &
Quarter = (Month + 2) / 3
select
DATE_PART_STR(date_purc
hased,"quarter") as D from
bucket1;
"results": [
{
LAl D " : 4
1
]
WEEK (154 =
Week =

int(math.Ceil(float64(YearD
ay)/ 7.0))

YearDay returns the day
of the year specified by
the time, in the range 1
to 365 for non-leap
years, and 1 to 366 in
leap years. (see golang
time package)

select
DATE_PART_STR(date_purc
hased,"week") as D from
bucket1;

https://golang.org/pkg/time/
https://golang.org/pkg/time/

"results": [

{
"D": 52

MILLISECOND (125 =
Millisecond = Nanosecond
/ 108 (as an integer)
select
DATE_PART_STR(date_purc
hased,"millisecond") as D
from bucket1;
"results": [
{
"D": 336
}
]
ISO_YEAR (%) =

Iso_year = ISO 8091 year
for the input timestamp.

select
DATE_PART_STR(date_purc
hased,"iso_year") as C from
bucket1;

"results": [

{
"c": 2008

ISO_WEEK

@

i

Iso_week = ISO 8091 week
for the input timestamp.
The week usually ranges
from 1 to 53. For example,
Jan 1to Jan 3 of year n
might belong to Week 52 or
53 of year n-1, and Dec 29
to 31 might belong to week
1 of year n+1.

select
DATE_PART_STR(date purc
hased,"iso_week") as D from
bucket1;

"results": [

{
"D": 52

DAY _OF YEAR
(DOY)

@

i

Day_of _year or doy =
YearDay
(see golang time package)

YearDay returns the day
of the year specified by
the time, in the range 1
to 365 for non-leap
years, and 1 to 366 in
leap years.

select
DATE_PART_STR(date_purc
hased,"doy") as D from
bucket1;

"results": [

https://golang.org/pkg/time/

"D": 360

I

DAY_OF_WEEK (15

(DOW)
Day_of week or dow =

Weekday function, which
returns the day of the week
for the given time. (see
golang time package)

select
DATE_PART_STR(date purc
hased,"dow") as D from
bucket1;

"results": [

{
"D": 4

For N1QL, within the date time format, TIMEZONE_REGION and TIMEZONE_ABBR
are not supported. (But these are passed into the timezone specific N1QL functions
which we shall see in Part 2 of this series).

As we can see above when it comes to representing the TIMESTAMP within N1QL
dates, there are additional fields supported. These are ISO_YEAR, ISO_WEEK,
DAY_OF_YEAR (DOY), DAY_OF_WEEK (DOW) and TIMEZONE which is the offset
from UTC.

In the absence of a time zone indicator, the current local timezone is used (where the
Couchbase server is installed).

Let us delve a little deeper into the TIMEZONE comparisons between N1QL and
Oracle. The TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME
ZONE data types in Oracle are variants of the TIMESTAMP data type. The former
includes the time zone information, which is the time zone offset which is the time

https://golang.org/pkg/time/

relative to UTC or time zone region name in its value, and the later includes the current
session timezone. TIMESTAMP WITH LOCAL TIME ZONE does not store time zone
information internally, but you can see local time zone information in SQL output if the
TZH:TZM or TZR TZD format elements are specified. (see here for more details).

Oracle
TIMESTAMP '2017-01-31 03:49:30.612 -08:00"

Couchbase
"2017-01-31T03:49:30.612-08:00"

For Oracle, if two dates being compared represent the same value in UTC, then they
are equal.

Oracle
TIMESTAMP '2017-01-15 8:00:00 -8:00"'" == TIMESTAMP '2017-01-15
10:00:00 -6:00"

In N1QL currently in order to compare full date values we need to convert them to
milliseconds.

N1QL :

STR_TO MILLIS ("2017-01-31T05:49:30.612-06:00") ==
STR_TO MILLIS("2017-01-31T03:49:30.612-08:00")
Value : 1485863370612

For Oracle, we can replace this offset with the Time zone region (TZR) and the
abbreviation. The abbreviation (TZD) is used in the event the region value is ambiguous
(when the US switches to daylight saving time).

However in N1QL the timezone component of the date is always represented as a UTC
offset.

For example
TIMESTAMP '2017-01-15 8:00:00 -8:00"' can also be TIMESTAMP
'2017-01-15 8:00:00 US/Pacific PDT'

Oracle also supports interval data types INTERVAL YEAR TO MONTH and INTERVAL
DAY TO SECOND. These store time durations. The former stores the duration using

https://docs.oracle.com/cd/B19306_01/server.102/b14225/ch4datetime.htm#i1005943

year and month fields and the latter using the days, hours, minutes and second fields.
With N1QL, computing an interval is made easy using date time functions and the “part”
component. (These functions will be explored more in Part 2).

There are multiple ways to insert date or time data into Oracle. The user can insert a
formatted string based on the NLS format value, or a literal with explicit conversion
using the TO_DATE / TO_TIMESTAMP or TO_TIMESTAMP_TZ functions or implicit
conversion.

For N1QL, all dates are added to a document as a string in the format specified above,
or as a number representing a Unix timestamp in milliseconds. This makes handling
dates very easy since the functions perform all the necessary arithmetic for the user.
One drawback though is that the date has to exactly match one of the formats in the
Date formats table. This restricts the user to use only a subset of available formats.

One workaround for this limitation with N1QL is to use the string functions and massage
the input date to reflect the format you want.

For example
Convert 2016-09-23T18:48:11.000+00:00 into "YYYY/MM/DD"

SELECT to string(date part str("2016-09-23T18:48:11.000+00:00",
"year")) || "/" ||

to string(date part str("2016-09-23T18:48:11.000400:00", "month"
)y /o

to string(date part str("2016-09-23T18:48:11.000+00:00", "day"
))

"results": [
"S1": "2016/9/23"

]

As we can see, N1QL simplifies manipulating Dates and Timestamps by representing it
as a string or a number when compared to Oracle. But this means that the user is
restricted to use only specified date time formats and does not have the freedom to
manipulate these formats, which Oracle does very easily using its Format Parameters.

Coming up in the Date Time article series -

aorwbd -~

Datetime and Interval Arithmetic

Conversion between different date time formats/data types.

How Oracle and N1QL handle daylight savings

Timezone related functions and how n1ql expects its timezone strings.
General SQL/N1QL functions to retrieve timestamps.

